Dispersal vector






The seeds of dandelions are adapted to wind dispersal.


Biological dispersal is a process by which an individual (gametic or otherwise) moves away from its birth population to another location or population in which the individual will reproduce[1]. In the context of the biology of dispersal, a dispersal vector is "an agent transporting seeds or other dispersal units".[2]


There are two types of dispersal vector, those that are active and those that are passive. Active dispersal involves organisms that are capable of movement under their own energy. In passive dispersal, the plants or animals have evolved dispersal units (called disseminules or diaspores) that use the kinetic energy of the environment for movement. Dispersal vectors may include self driven factors (autochory), biotic factors, such as animals (zoochory), or abiotic factors, such as the wind (anemochory) or water (hydrochory).[2]


In many cases for organisms, it is not just one form of dispersal that acts on the dispersal unit. It is often a combination of two or more modes of dispersal that act together to maximize dispersal distance, such as wind blowing a seed into a nearby river, that will carry it farther down stream.[3]




Contents






  • 1 Self Generated Dispersal (Autochory)


  • 2 Animals (Zoochory)


    • 2.1 Ornithochory


    • 2.2 Myrmecochory


    • 2.3 Mammaliochory


    • 2.4 Dispersal by Amphibians or Reptiles


    • 2.5 Dispersal by Invertebrates




  • 3 Wind (Anemochory)


    • 3.1 Adaptive Morphology


    • 3.2 Human Effects on Anemochory




  • 4 Water (Hydrochory)


    • 4.1 Marine Dispersal


    • 4.2 Freshwater Dispersal


    • 4.3 Extreme Weather


    • 4.4 Human-Created Hydrochory




  • 5 Human Mediated Dispersal


  • 6 See also


  • 7 References





Self Generated Dispersal (Autochory)




In leptosporangiate ferns, the fern catapults its spores 1-2 cm so they can be picked up by a secondary dispersal vector, predominantly the wind[4].  


Autochory is the dispersal of disseminules using only the energy provided by the unit or the parent plant, and no external dispersal factors[citation needed]. There are four main types of autochory of diaspores: ballochory, or violent ejection by the parent organism, blastochory, where a diaspore crawls along the ground using stolons, barochory, the use of gravity for dispersal, and herpochory, crawling using hygroscopic hairs called trichomes [5].


In some cases, ballochory can be used to more effectively use a secondary dispersal vector[6].


For more information, see seed dispersal.



Animals (Zoochory)


Animal-mediated dispersal is called zoochory[5]. Zoochory can be further described by which animal is acting as a dispersal vector. The main groups include dispersal by birds (Ornithochory), dispersal by ants (Myrmekochory), dispersal by mammals (Mammaliochory), dispersal by amphibians or reptiles, and dispersal by insects, such as bees[5]. Animals are an important dispersal vector because they provide the ability to transfer disseminules longer distances than their parent organism can. Animals are also a large contributor to pollination via Zoophily. Flowering plants overwhelmingly are pollinated by animals, and while invertebrates are involved in the majority of that pollination, birds and mammals also play a role[7].



Ornithochory




Barn owl pellets containing pouched mouse remains have been found to contain germinating seeds.[8]


Birds contribute to seed dispersal in several ways that are unique from general vectors. Birds often cache, or store, the seeds of trees and shrubs for later consumption; only some of these seeds are later recovered and eaten, so many of the seeds are able to utilize seed caching as a dispersal vector allowing them to germinate away from the mother tree [5].


Because migratory birds are able to travel long distances, they are known as "long distance dispersal vectors" (LDD). For many plants, invertebrates, and microbes dispersed by birds, long-distance dispersal (LDD), rarely able to occur by parent plant alone, could possibly be regularly practiced when mediated by migratory movements. Because LDD operates over spatial areas that span thousands and thousands of kilometers, it can promote rapid range shifts and determine species distributions[9].


In seed dispersal, which is particularly well studied, ingestion of seeds that are capable of resisting digestive juices allows the seeds to be scattered in feces and dispersed far from the parent organism[1]. For these seeds, gut passage enhances germination ability when the seeds are ingested by birds and mammals[5].


Finally, ingestion of herbivores by carnivorous animals may help disperse seeds by preying on primary seed dispersers such as herbivores or omnivores. When a bird is eaten by a cat or another carnivore, that animals will also consume the seeds that the prey species had consumed inadvertently. These seeds may then be later deposited in a process called diploendozoochory, which is important for seed dispersal outcomes as carnivores range widely and enhance population connectivity for lower trophic levels[10].


Birds act as dispersal vectors for non-seed disseminules as well. Hummingbirds spread pollen on their beaks[11], and fungal spores may stick to the bottom of birds’ feet[12]. Water birds may also help to disperse aquatic invertebrates, specifically branchiopods, ostracods, and bryozoans[13].



Myrmecochory


This includes all of the dispersal caused by ants, including seed dispersal and the dispersal of leaf matter from trees. See the myrmecochory page for more details.



Mammaliochory


Similarly to birds, dispersal by mammals allows for long distance dispersal, especially via carnivores. The act of carnivores eating primary dispersal vectors (herbivores) can lead to population connectivity because of large predator ranges[14][15]. Mammals have been shown to act as dispersal vectors for seeds, spores, and parasites.


Just as in ornithocory, ingestion by herbivores acts as a dispersal vector for seeds, and gut passage increases the rate of germination [16][17].




Cape Genets have been found to act as pollinators when they drink nectar from flowers[18]


Marsupials, primates, rodents, bats, and some species in the suborder Feliformia (Cape grey mongooses and Cape genets) have all been identified as pollinators[19][20]. Non-flying mammals have been identified as acting as pollinators in Australia, Africa, South and Central America. Some plants may have traits that coevolved to utilize mammals as dispersal vectors[20]. The pollen of some plants can be found stuck to the fur of mammals as well as accidentally ingested when nectar is consumed[20].




Diaspores from 6 different bryophytes have been found on the fur of American red squirrels, Northern flying squirrels, and deer mice[21].


Mammals contribute to bryophyte and fern spore dispersal by carrying spores on their fur. Small mammals acting as dispersal vectors may have advantages compared to wind transport, as the mammals share similar ecosystems to the parent plant, while wind transport is random. Additionally, mammals can transport spores that have qualities such as low production and non-wind adapted morphology that wouldn't be conducive for wind transport[22].


Dik-dik, (Madoqua kirkii), Grant's gazelle (Gazella granti), and impala (Aepyceros melampus) all disperse the nematode parasites in their feces [23]. These species become infected by gastrointestinal nematode parasites that lay on vegetation the antelope consume[23]. Once consumed, the eggs are spread to a new area via the defecation of small mounds of dung after[23].



Dispersal by Amphibians or Reptiles


Frogs and lizards have been found to be dispersal vectors for crustaceans and ring worms, specifically bromeliad ostracods (Elpidium bromeliarum) and annelids (Dero superterrenus). Annelids showed a strong chemical orientation towards moist frog skin that may have developed to diminish risk of dehydration during transport in the environment. The ostracods have frequently been found to be attached to frogs in order to colonize new areas. Both ostracods and annelids will attach themselves to lizards as well, but they prefer to attach themselves to frogs.[24]



Dispersal by Invertebrates


One of the most important examples of dispersal via invertebrate are pollinators such as bees, flies, wasps, beetles, and butterflies[25]. See Pollination and Pollinators for more information.


Invertebrates may also act as dispersal vectors for the spores of ferns and bryophytes via endozoochory, or the ingestion of the plant.[26]



Wind (Anemochory)


Anemochory is dispersal of units by wind.


Wind is a major factor of long distance dispersal that is responsible for the spread and propagation of species to new habitats.[27] Each species has its own "wind dispersal potential", which is the proportion of dispersal units that travel farther than a predefined reference distance travelled under normal weather conditions.[28]


The effectiveness of wind dispersal relies predominantly on the morphological traits and adaptations of the dispersal units and wind conditions.[29] The two main factors of plants that predict their wind dispersal potential are falling velocity and initial release height of the dispersal unit.



Adaptive Morphology


Many species have evolved morphological adaptations to maximize wind dispersal potential. Common examples include plumed, winged, and balloon-like diaspores.[30]




Plumed diaspores of the dandelion, Taraxacum officinale.


Plumed: Plumed diaspores have thin hair-like projections that allow easier wind uplift.[31] One of the most common plumed species is the dandelion, Taraxacum officinale. The wind dispersal potential of plumed species are directly correlated to the total mass and total surface area of the projected plume.[32]




Winged seeds of the Norway spruce, Picea abies.


Winged: Winged diaspores have fibrous tissue that develops on the wall of the seed and projects outward, see Samara (fruit).Seed wings are generally thought to co-evolve with the evolution of larger seeds, in order to increase dispersal and offset the weight of the larger seeds.[33] A common examples include pine and spruce trees.


Ballon-like: Balloon-like seeds are a phenomenon where the calyx, a kind of protective pouch or covering the plant uses to guard the seeds, is light and swollen.[34] This ballon-like structure allows the entire pouch of seeds to be dispersed by gusts of wind[34]. A common example of the balloon-like diaspore is the Trifolium fragiferum, or strawberry clover.



Human Effects on Anemochory


Wind dispersal of a particular species can also be affected by human actions.[35] There are three main ways that humans can affect anemochory.[36] Clearing land for development and building roads through forests can lead to habitat fragmentation. Habitat fragmentation reduces the number and size of the affected populations, which reduces the amount of seeds that are dispersed.[36] This lowers the probability that dispersed seeds with germinate and take root.[37]


Runoff from fertilizer, leakages of sewage, and carbon emissions from fossil fuels can also lead to eutrophication. The increased site productivity results in better conditions for foreign, competitive species, which increases short-distance colonization and dispersal and decreases long range dispersal.[35]


Climate change effects on wind patterns have the potential to affect wind dispersal in the opposite direction, increasing average wind velocity.[35] However, it can also lead to lower levels of wind dispersal for each individual plant or organism because of the affects climate change has on the normal conditions needed for plant growth, such as temperature and rainfall.[35]



Water (Hydrochory)


Hydrochory is dispersal using water, including rivers, streams, oceans, and rain, as a vector.[38] It affects many different dispersal units, such as seeds, fern spores, zooplankton, and plankton.


Terrestrial water sources tend to be more restricted in their ability to disperse units due to land[39]. Barriers such as mountain ranges, farm land, and urban centers prevent the relatively free movement of dispersal units seen in open bodies of water[39]. Oceanic dispersal can move individuals or reproductive propagules anywhere from a meter to hundreds of kilometers from the original point depending on the size of the individual [39][40].



Marine Dispersal


A majority of marine organisms utilize ocean currents and movement within the water column to reproduce[39][41][42]. The process of releasing reproductive propagules into the water is called broadcast spawning [39][42]. While broadcast spawning requires parents to be relatively close to each other for fertilization, the fertilized zygotes can be moved extreme distances[43]. A number of marine invertebrates require ocean currents to connect their gametes once broadcast spawning has occurred [44]. Kelp, an important group of sea plants, primarily utilize ocean currents to distribute their spores and larvae[45]. Many coral species reproduce by releasing gametes into the water column with hopes that other local corals will also release gametes before these units are dispersed by ocean currents[46].


Some non-submerged aquatic plant species, like palm trees and mangroves, have developed fruits that float in sea water in order to utilize ocean currents as a form of dispersal[40]. Coconuts have been found to travel up to thousands of miles away from their parent tree due to their buoyant nature[47]. There is a variety of over 100 species of “higher plants” that utilize this dispersal for their fruit[40].


Many plants have evolved with specific adaptations to maximize the distance that seeds, fruits, or propagules are dispersed in the ocean. For an increased protection against sinking in the water column, seeds have developed hair or slime on their outer seed coats[47]. Seeds with filled with air, cork, or oil are better prepared to float for farther distances[47].


Another aspect of dispersal comes from wave and tidal action[48]. Organisms in shallower waters, such as seagrasses, become displaced and dispersed by waves crashing upon them and tides pulling them out into the open ocean[48][49].




An iceberg that may act as a raft for arctic invertebrates.


Some smaller marine organisms maximize their own dispersal by attaching to a raft - a biotic or abiotic object that is being moved by the ocean’s currents[50]. Biotic rafts can be floating seeds or fruits, leaves, or other propagules[50]. Abiotic rafts are usually floating woods or plastics, including buoys and discarded trash[50]. To get more information on rafting and drifting, see ocean dispersal.


Sea ice is also an important dispersal vector. Some arctic species rely on sea ice to disperse their eggs, like Daphnia pulex[51]. Drifting, as discussed above, can be an effective dispersal vector for marine mammals. It has been shown that intertidal benthic invertebrates will utilize sea ice as a raft to travel up to multiple kilometers[52].



Freshwater Dispersal


Freshwater dispersal is primarily occurs through flowing water transporting dispersal units[51]. Permanent aquatic environments require outside forms of dispersal to retain biodiversity, so hydrochory via freshwater is vital for the success of terrestrial water sources[53]. Lakes remain genetically diverse thanks to rivers that connect lakes to new sources of biodiversity[51]. In lakes that lack connecting rivers, some organisms have developed adaptations that utilize the wind, while in an aquatic environment, to disperse reproductive units[54].




Flowing rivers can act as dispersal vectors for plant matter and invertebrates.


Running water is the only form of long distance dispersal present in freshwater sources, so rivers act as the main aquatic terrestrial dispersal vector[55]. Like in marine ecosystems, organisms take advantage of flowing water passive transport by drifting along on a raft[56]. The distance traveled by floating or drifting organisms and propagules is determined primarily on the amount of time that organism or unit is able to retain buoyancy[57].  


Freshwater is important for dispersal of non-aquatic terrestrial organisms as well. Bryophytes require an external source of water in order to sexually reproduce. Some bryophytes also utilize falling rain drops to maximize their spore dispersal distances[58][59].



Extreme Weather


Extreme weather that functions as a water-based dispersal vector include tropical cyclones, floods and heavy rains, hurricanes, and thunderstorms[40]. These events create long distance dispersal of units due to their high intensity and high volume of rain produced at one time[40].


Overflow is traditionally a side effect of heavy rains impacting one specific area[54]. Overflows have been shown to be effective in transmitting biodiversity between temporary lakes and ponds[53]. The overflow of pool water acts as an important passive form of hydrochory in which water acts as a vector[60]. Floods displace plants and organisms, whether or not overflow occurs[55]. Macrophytes and organisms as small as zooplankton can be transported via flood pulses[55].


Hurricanes can also act as dispersal vectors. After the 2004 Hurricane Charley struck Florida, there was a higher reported dispersal of the propagules of red mangrove trees[61]. If a hurricane strikes in the later summer months, there is an expected increase in the dispersal of propagules, while early storms can wash out immature propagules and decrease the dispersal of mature propagules for that season[61].


When extreme weather events occur over an open body of water, they can create intense waves.  These waves can create large dispersal within the water column by changing local water movement, but tend to constrict the actual dispersal distance for smaller organisms[41].



Human-Created Hydrochory


The fishing industry has introduced many new forms in which water acts as a dispersal vector. The water in bait buckets transfers bait everywhere a fisherman takes it, and this can introduce non-native species into new areas should this bait water be spilt[51]. This idea is applied on a much larger scale to the ballast tanks of ships[51]. A study done by James Carlton of Williams College reports that more than 3000 species are moving across the ocean in ballast tanks on any given day[62].


Artificial waterways created by humans have also spurred new forms of hydrochory. Amphipods were found to be able to cross previously uncrossable areas to enter into new drainage pipe thanks to the construction of a canal[51].


Artificial waterways not only connect communities that are geographically close, but they also allow for the transmission of invasive species from distant communities[53]. The distribution of invasive species is, in part, regulated by local ocean conditions and currents[42].


The introduction of human-generated waste, like wood planks and plastic bags, into water sources has increased the amount of viable rafts for dispersal[63].



Human Mediated Dispersal


Humans have been acting as dispersal vectors since we began moving around the planet, bringing non-native plants and animals with us. As trends in urbanization have increased, urban environments can act as staging grounds for species dispersal and invasion. Many non-native species exist in urban environments and the high rate of movement in an out of urban areas leads to a high level of dispersal to neighboring environments. [64]



See also



  • Seed dispersal

  • Basal shoot

  • Myrmecochory

  • Oceanic dispersal

  • Biological dispersal

  • Diplochory

  • Diaspore (botany)

  • Zoophily

  • Pollination

  • Pollinators



References




  1. ^ ab Croteau, Emily K (2010). "Causes and Consequences of Dispersal in Plants and Animals". Nature..mw-parser-output cite.citation{font-style:inherit}.mw-parser-output q{quotes:"""""""'""'"}.mw-parser-output code.cs1-code{color:inherit;background:inherit;border:inherit;padding:inherit}.mw-parser-output .cs1-lock-free a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/6/65/Lock-green.svg/9px-Lock-green.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-limited a,.mw-parser-output .cs1-lock-registration a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/d/d6/Lock-gray-alt-2.svg/9px-Lock-gray-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-lock-subscription a{background:url("//upload.wikimedia.org/wikipedia/commons/thumb/a/aa/Lock-red-alt-2.svg/9px-Lock-red-alt-2.svg.png")no-repeat;background-position:right .1em center}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration{color:#555}.mw-parser-output .cs1-subscription span,.mw-parser-output .cs1-registration span{border-bottom:1px dotted;cursor:help}.mw-parser-output .cs1-hidden-error{display:none;font-size:100%}.mw-parser-output .cs1-visible-error{font-size:100%}.mw-parser-output .cs1-subscription,.mw-parser-output .cs1-registration,.mw-parser-output .cs1-format{font-size:95%}.mw-parser-output .cs1-kern-left,.mw-parser-output .cs1-kern-wl-left{padding-left:0.2em}.mw-parser-output .cs1-kern-right,.mw-parser-output .cs1-kern-wl-right{padding-right:0.2em}


  2. ^ ab Frank M. Schurr; Orr Spiegel; Ofer Steinitz; Ana Trakhtenbrot; Asaf Tsoar; Ran Nathan (2009). "Long-Distance Seed Dispersal". In Lars Østergaard. Fruit development and seed dispersal. Volume 38 of Annual Plant Reviews. John Wiley and Sons. pp. 204–237. doi:10.1002/9781444314557.ch6. ISBN 978-1-4051-8946-0.


  3. ^ Merritt, David M.; Wohl, Ellen E. (August 2002). "PROCESSES GOVERNING HYDROCHORY ALONG RIVERS: HYDRAULICS, HYDROLOGY, AND DISPERSAL PHENOLOGY". Ecological Applications. 12 (4): 1071–1087. doi:10.1890/1051-0761(2002)012[1071:pgharh]2.0.co;2. ISSN 1051-0761.


  4. ^ Pajarón, Santiago; Pangua, Emilia; Quiles, Laura (2017-11-21). "Autochory in ferns, not all spores are blown with the wind". Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology. 152 (5): 979–985. doi:10.1080/11263504.2017.1403395. ISSN 1126-3504.


  5. ^ abcde Van der Maarel, Eddy; Franklin, Janet, eds. (2013). Vegetation Ecology (2 ed.). UK: Wiley Blackwell. pp. 168, 171, 173.


  6. ^ Pajarón, Santiago; Pangua, Emilia; Quiles, Laura (2017-11-21). "Autochory in ferns, not all spores are blown with the wind". Plant Biosystems - an International Journal Dealing with All Aspects of Plant Biology. 152 (5): 979–985. doi:10.1080/11263504.2017.1403395. ISSN 1126-3504.


  7. ^ Douglass, Michelle. "Animals you might not know pollinate flowers". Retrieved 2018-10-26.


  8. ^ Dean, W. R. J.; Milton, Suzanne J. (1988). "Dispersal of seeds by raptors". African Journal of Ecology. 26 (2): 173–176. doi:10.1111/j.1365-2028.1988.tb00967.x. ISSN 0141-6707.


  9. ^ Viana, Duarte S. (July 5, 2016). "Migratory Birds as Global Dispersal Vectors". Trends in Ecology & Evolution. 31 (10): 763–775. doi:10.1016/j.tree.2016.07.005. hdl:10261/138397. PMID 27507683. Archived from the original on April 19, 2018.


  10. ^ Hämäläinen, Anni; Broadley, Kate; Droghini, Amanda; Haines, Jessica A.; Lamb, Clayton T.; Boutin, Stan; Gilbert, Sophie (2017-02). "The ecological significance of secondary seed dispersal by carnivores". Ecosphere. 8 (2): e01685. doi:10.1002/ecs2.1685. ISSN 2150-8925. Check date values in: |date= (help)


  11. ^ Linhart, Yan B. (1973). "Ecological and Behavioral Determinants of Pollen Dispersal in Hummingbird- Pollinated Heliconia". The American Naturalist. 107 (956): 511–523. JSTOR 2459823.


  12. ^ Evans, Raymond N.; Prusso, Don C. (1969). "Spore Dispersal by Birds". Mycologia. 61 (4): 832–835. doi:10.2307/3757475. JSTOR 3757475.


  13. ^ Brochet, A. L.; Gauthier-Clerc, M.; Guillemain, M.; Fritz, H.; Waterkeyn, A.; Baltanás, Á.; Green, A. J. (2009-11-12). "Field evidence of dispersal of branchiopods, ostracods and bryozoans by teal (Anas crecca) in the Camargue (southern France)". Hydrobiologia. 637 (1): 255–261. doi:10.1007/s10750-009-9975-6. hdl:10261/38737. ISSN 0018-8158.


  14. ^ Hämäläinen, Anni; Broadley, Kate; Droghini, Amanda; Haines, Jessica A.; Lamb, Clayton T.; Boutin, Stan; Gilbert, Sophie (2017). "The ecological significance of secondary seed dispersal by carnivores". Ecosphere. 8 (2): e01685. doi:10.1002/ecs2.1685. ISSN 2150-8925.


  15. ^ Croteau, Emily K (2010). "Causes and Consequences of Dispersal in Plants and Animals". Nature.


  16. ^ Anne Bråthen, Kari; T. González, Victoria; Iversen, Marianne; Killengreen, Siw; T. Ravolainen, Virve; A. Ims, Rolf; G. Yoccoz, Nigel (2007). "Endozoochory varies with ecological scale and context". Ecography. 30 (2): 308–320. doi:10.1111/j.0906-7590.2001.04976.x. ISSN 0906-7590.


  17. ^ Boch, Steffen; Berlinger, Matthias; Prati, Daniel; Fischer, Markus (2015-12-17). "Is fern endozoochory widespread among fern-eating herbivores?". Plant Ecology. 217 (1): 13–20. doi:10.1007/s11258-015-0554-9. ISSN 1385-0237.


  18. ^ Douglass, Michelle. "Animals you might not know pollinate flowers". Retrieved 2018-10-26.


  19. ^ Douglass, Michelle. "Animals you might not know pollinate flowers". Retrieved 2018-10-26.


  20. ^ abc Carthew, S. (1997-03-01). "Non-flying mammals as pollinators". Trends in Ecology & Evolution. 12 (3): 104–108. doi:10.1016/S0169-5347(96)10067-7. ISSN 0169-5347.


  21. ^ Barbé, Marion; Chavel, Émilie E.; Fenton, Nicole J.; Imbeau, Louis; Mazerolle, Marc J.; Drapeau, Pierre; Bergeron, Yves (2016). "Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest". Écoscience. 23 (3–4): 67–76. doi:10.1080/11956860.2016.1235917. ISSN 1195-6860.


  22. ^ Barbé, Marion; Chavel, Émilie E.; Fenton, Nicole J.; Imbeau, Louis; Mazerolle, Marc J.; Drapeau, Pierre; Bergeron, Yves (2016). "Dispersal of bryophytes and ferns is facilitated by small mammals in the boreal forest". Écoscience. 23 (3–4): 67–76. doi:10.1080/11956860.2016.1235917. ISSN 1195-6860.


  23. ^ abc Ezenwa, Vanessa O. (2004). "Selective Defecation and Selective Foraging: Antiparasite Behavior in Wild Ungulates?". Ethology. 110 (11): 851–862. doi:10.1111/j.1439-0310.2004.01013.x. ISSN 0179-1613.


  24. ^ Lopez, Luiz Carlos Serramo; Filizola, Bruno; Deiss, Isabela; Rios, Ricardo Iglesias (2005). "Phoretic Behaviour of Bromeliad Annelids (Dero) and Ostracods (Elpidium) using Frogs and Lizards as Dispersal Vectors". Hydrobiologia. 549 (1): 15–22. doi:10.1007/s10750-005-1701-4. ISSN 0018-8158.


  25. ^ Douglass, Michelle. "Animals you might not know pollinate flowers". Retrieved 2018-10-26.


  26. ^ Boch, Steffen; Berlinger, Matthias; Prati, Daniel; Fischer, Markus (2015-12-17). "Is fern endozoochory widespread among fern-eating herbivores?". Plant Ecology. 217 (1): 13–20. doi:10.1007/s11258-015-0554-9. ISSN 1385-0237.


  27. ^ Soons, Merel B.; Bullock, James M. (2008). "Non-random seed abscission, long-distance wind dispersal and plant migration rates". Journal of Ecology. 96 (4): 581–590. doi:10.1111/j.1365-2745.2008.01370.x. ISSN 0022-0477.


  28. ^ Tackenberg, Oliver; Poschlod, Peter; Bonn, Susanne (2003). "ASSESSMENT OF WIND DISPERSAL POTENTIAL IN PLANT SPECIES". Ecological Monographs. 73 (2): 191–205. doi:10.1890/0012-9615(2003)073[0191:aowdpi]2.0.co;2. ISSN 0012-9615.


  29. ^ Okubo, Akira; Levin, Simon A. (1989). "A Theoretical Framework for Data Analysis of Wind Dispersal of Seeds and Pollen". Ecology. 70 (2): 329–338. doi:10.2307/1937537. JSTOR 1937537.


  30. ^ Tackenberg, Oliver; Poschlod, Peter; Bonn, Susanne (2003). "ASSESSMENT OF WIND DISPERSAL POTENTIAL IN PLANT SPECIES". Ecological Monographs. 73 (2): 191–205. doi:10.1890/0012-9615(2003)073[0191:aowdpi]2.0.co;2. ISSN 0012-9615.


  31. ^ Tackenberg, Oliver; Poschlod, Peter; Bonn, Susanne (2003). "ASSESSMENT OF WIND DISPERSAL POTENTIAL IN PLANT SPECIES". Ecological Monographs. 73 (2): 191–205. doi:10.1890/0012-9615(2003)073[0191:aowdpi]2.0.co;2. ISSN 0012-9615.


  32. ^ Casseau, Vincent; De Croon, Guido; Izzo, Dario; Pandolfi, Camilla (2015-05-04). "Morphologic and Aerodynamic Considerations Regarding the Plumed Seeds of Tragopogon pratensis and Their Implications for Seed Dispersal". PLoS ONE. 10 (5): e0125040. doi:10.1371/journal.pone.0125040. ISSN 1932-6203. PMC 4418730. PMID 25938765.


  33. ^ Telenius, Anders; Torstensson, Peter (1991). "Seed Wings in Relation to Seed Size in the Genus Spergularia". Oikos. 61 (2): 216–222. doi:10.2307/3545339. JSTOR 3545339.


  34. ^ ab Tackenberg, Oliver; Poschlod, Peter; Bonn, Susanne (2003). "ASSESSMENT OF WIND DISPERSAL POTENTIAL IN PLANT SPECIES". Ecological Monographs. 73 (2): 191–205. doi:10.1890/0012-9615(2003)073[0191:aowdpi]2.0.co;2. ISSN 0012-9615.


  35. ^ abcd Soons, Merel B.; Nathan, Ran; Katul, Gabriel G. (2004). "HUMAN EFFECTS ON LONG-DISTANCE WIND DISPERSAL AND COLONIZATION BY GRASSLAND PLANTS". Ecology. 85 (11): 3069–3079. doi:10.1890/03-0398. ISSN 0012-9658.


  36. ^ ab Soons, Merel B.; Nathan, Ran; Katul, Gabriel G. (2004). "HUMAN EFFECTS ON LONG-DISTANCE WIND DISPERSAL AND COLONIZATION BY GRASSLAND PLANTS". Ecology. 85 (11): 3069–3079. doi:10.1890/03-0398. ISSN 0012-9658.


  37. ^ Soons, Merel B.; Nathan, Ran; Katul, Gabriel G. (2004). "HUMAN EFFECTS ON LONG-DISTANCE WIND DISPERSAL AND COLONIZATION BY GRASSLAND PLANTS". Ecology. 85 (11): 3069–3079. doi:10.1890/03-0398. ISSN 0012-9658.


  38. ^ Ran, Nathan (November 2008). "Mechanisms of long-distance seed dispersal". Trends. 23 – via Science Direct.


  39. ^ abcde Robinson, L. M. (November 2011). "Pushing the limits in marine species distribution modelling: lessons from the land present challenges and opportunities". Global Ecology and Biogeography. 20 (6): 789–802. doi:10.1111/j.1466-8238.2010.00636.x.


  40. ^ abcde Nathan, Ran (2008). "Mechanisms of long-distance seed dispersal". Trends in Ecology and Evolution. 23: 638–647 – via Elsevier.


  41. ^ ab Gaylord, Brian (May 2002). "A physically based model of macroalgal spore dispersal in the wave and current-dominated nearshore". Ecology. 83 (5): 1239–1251 – via Wiley.


  42. ^ abc Richardson, Mark F. (2016). "Multiple dispersal vectors drive range expansion in an invasive marine species". Molecular Ecology. 25 (20): 5001–5014. doi:10.1111/mec.13817. PMID 27552100.


  43. ^ Hobday, Alistair J. (2001). "Over-exploitation of a broadcast spawning marine invertebrate: Decline of the white abalone". Reviews in Fish Biology and Fisheries. 10: 493–514.


  44. ^ Morita, Masaya (May 2009). "Ocean acidification reduces sperm flagellar motility in broadcast spawning reef invertebrates". Zygote. 18: 103–107.


  45. ^ Reed, Daniel C.; Amsler, Charles D.; Ebeling, Alfred W. (October 1992). "Dispersal in kelps: Factors affecting spore swimming and competency". Ecology. 73 (5): 1577–1585.


  46. ^ Negri, A. P.; Webster, N. S.; Hill, R. T.; Heyward, A. J. (November 2001). "Metamorphosis of broadcast spawning corals in response to bacteria isolated from crustose algae". Marine Ecology Progress Series. 223: 121–131.


  47. ^ abc Howe, Henry F.; Smallwood, Judith (1982). "Ecology of Seed Dispersal". Annual Review of Ecology and Systematics. 13: 201–228.


  48. ^ ab McMahon, Kathryn (November 2014). "The movement ecology of seagrass". Proceedings of the Royal Society of London B: Biological Sciences. 281: 1–9.


  49. ^ Kendrick, Gary A. (January 2012). "The central role of dispersal in the maintenance and persistence of seagrass populations". BioScience. 62: 56–65 – via JSTOR.


  50. ^ abc Winston, Judith E. (October 2012). "Dispersal in marine organisms without a pelagic larval phase". Integrative and Comparative Biology. 52: 447–457 – via JSTOR.


  51. ^ abcdef Havel, John E.; Shurin, Jonathan B. (July 2004). "Mechanisms, effects, and scales of dispersal in freshwater zooplankton". Limnology and Oceanography. 49: 1229–1238 – via JSTOR.


  52. ^ Macfarlane, Colin B. A. (January 2013). "Dispersal of marine benthic invertebrates through ice rafting". Ecology. 94: 250–256 – via Wiley.


  53. ^ abc Vanschoenwinkel, Bram (2008). "Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity". Ecography. 31: 567–577.


  54. ^ ab Incagnone, Giulia (2015). "How do freshwater organisms cross the "dry ocean"? A review on passive dispersal and colonization processes with a special focus on temporary ponds". Hydrobiologia. 750: 103–123.


  55. ^ abc Battauz, Yamila S. (2017). "Macrophytes as dispersal vectors of zooplankton resting stages in a subtropical riverine floodplain". Aquatic Ecology. 51: 191–201.


  56. ^ Bilton, David T. (2001). "Dispersal in freshwater invertebrates". Annual Review of Ecology and Systematics. 32: 159–181 – via JSTOR.


  57. ^ Donnelly, Melinda J.; Walters, Linda J. (November 2008). "Water and boating activity as dispersal vectors for Schinus terebinthifolius (Brazilian pepper) seeds in freshwater and estuarine habitats". Estuaries and Coasts. 31: 960–968 – via JSTOR.


  58. ^ Sundberg, Sebastian (January 2005). "Larger capsules enhance short-range spore dispersal in Sphagnum, but what happens further away?". Oikos. 108: 115–124 – via JSTOR.


  59. ^ Fitt, B. D. L. (1987). "Spore dispersal and plant disease gradients; a comparison between two empirical models". Journal of Phytopathology. 118: 227–242.


  60. ^ Sciullo, L.; Kolasa, J. (2012). "Linking local community structure to the dispersal of aquatic invertebrate species in a rock pool metacommunity". Community Ecology. 13: 203–212 – via JSTOR.


  61. ^ ab Proffitt, C. Edward (December 2006). "Red mangrove (Rhizophora mangle) reproduction and seedling colonization after Hurricane Charley: Comparisons of Charlotte Harbor and Tampa Bay". Estuaries and Coasts. 29: 972–978.


  62. ^ Carlton, James T. (1996). "Pattern, process, and prediction in marine invasion ecology". Biological Conservation. 78: 97–106.


  63. ^ Kiessling, Tim (2015). "Marine litter as habitat and dispersal vector". Marine Anthropogenic Litter: 141–181.


  64. ^ von der Lippe, Moritz (Spring 2017). "Do cities export biodiversity? Traffic asdispersal vector across urban–rural gradients". Diversity and Distributions. 14: 18–25. doi:10.1111/j.1472-4642.2007.00401.x.








Popular posts from this blog

Dragon Quest

AM broadcasting

奥古斯特三世 (波兰)